Notices
General Automotive Discuss all things automotive here other than the RX-8

The future of ethanol draws closer, N.H. company perfects production enzyme.

Thread Tools
 
Search this Thread
 
Rate Thread
 
Old 05-21-2009, 01:19 PM
  #1  
jersey fresh
Thread Starter
 
dillsrotary's Avatar
 
Join Date: Dec 2005
Location: Boston, MA
Posts: 3,688
Likes: 0
Received 0 Likes on 0 Posts
Thumbs up The future of ethanol draws closer, N.H. company perfects production enzyme.

I've been following this for about 2 years now, and it truly interests me. Mainly the breaking down of nearly any plant cell wall to produce ethanol. All you needed for a genetic "super" bug to cut the process greatly.... thus.....

Cellulosic Ethanol on the Cheap
Mascoma has announced several advances that may lead to a cheaper, more efficient process to turn biomass into ethanol.

The process of making ethanol from cellulosic sources such as wood chips and paper pulp is somewhat like following a complicated French recipe: it takes many costly ingredients and multiple pots, each with its own settings and instructions, to concoct the final product, and the entire enterprise is expensive and somewhat inefficient. Now Mascoma, a cellulosic biofuels company based in Lebanon, NH, reports significant advances in its goal of simplifying the cellulosic ethanol process by skipping the use of costly enzymes, which could potentially reduce cellulosic ethanol's production costs by 20 to 30 percent.

Mascoma's strategy, called consolidated bioprocessing, aims to combine the multiple steps of ethanol production into one, using genetically engineered superbugs that perform the multiple steps involved in making cellulosic ethanol. The company reports a series of advances that it says brings it "substantially closer to commercialization." Mascoma announced the results recently at the 31st Symposium on Biotechnology for Fuels and Chemicals, in San Francisco.

Existing technology to produce ethanol from cellulosic sources involves a multistep process: plant material such as paper pulp and switchgrass are first pretreated, to separate cellulose from the rest of the plant matter. Cellulose is then mixed with enzymes that break it down into sugars. Yeast then takes over to ferment the sugars into ethanol.

As a less costly alternative, Mascoma researchers are engineering microbes to combine the last two steps of the process: breaking down cellulose, and converting sugars into ethanol. They say that if they can get microorganisms to make ethanol at sufficiently high rates, they can reduce the amount of expensive enzymes needed to break down cellulose, which can normally take up half of ethanol's production costs.

The company is exploring three potential organisms for ethanol production: two types of bacteria, and one yeast strain. C. thermocellum and T. saccharolyticum are thermophilic bacteria, able to withstand high temperatures such as those experienced in reactors. Researchers have been interested in both bacterial strains for years due to their natural ability to both convert cellulose into sugar and ferment sugar into ethanol.

However, these strains produce very low levels of ethanol. The limiting factor is its by-products: both bacteria break down cellulose into glucose and other sugars such as xylose. The bacteria can then ferment glucose into ethanol, but remaining sugars like xylose cannot be fermented. What's more, ethanol yield is low because bacteria produce other organic acid by-products in the fermentation process, such as acetate and lactate. Scientists have also found that these bacteria are inhibited and stop growing in the presence of high levels of ethanol.

In order to optimize the bacteria's performance and increase ethanol yield, Mascoma researchers metabolically engineered both strains to be able to ferment xylose, without the help of added enzymes. They also cut out bacteria's metabolic pathways that produce by-products such as lactate and acetate, so that the microbes only produce ethanol. Finally, the scientists engineered the microbe to keep breaking down cellulose in high concentrations of ethanol.

In Mascoma's work with yeast, researchers genetically added a process not normally found in native strains. Normally, yeast is a very efficient and robust ethanol producer and can ferment sugars at high rates. It does not have any natural ability to break down cellulose, however. So Mascoma's scientists engineered yeast to produce cellulolytic enzymes, enabling it to grow on cellulose and break it down. The researchers also inserted genes into yeast that allow it to ferment xylose, further increasing its ethanol yield. In experiments with paper sludge, the engineered yeast broke down and converted 85 percent of cellulose into sugars and produced ethanol without the help of added enzymes.

Frances Arnold, a professor of chemical engineering and biochemistry at the California Institute of Technology and a member of Mascoma's scientific advisory board, says that the company's work in yeast may be a near-term commercial application. "What they're reporting, with a high-level expression of cellulase from yeast, is really impressive," she says. It's been difficult, Arnold says, "to get these enzymes expressed in yeast. If you look at the literature, it's dismal--micrograms or milligrams per liter--and they're talking about a gram per liter--many magnitudes higher than others have reported, to a point where it starts to look interesting."

"There's still optimization for these microbes that remain, and we want to improve their cellulolytic performance, and the rate at which they hydrolize sugars, which speeds up the overall production process," says Jim Flatt, the Mascoma's executive vice president of research and development. "They perform, they're reliable, but we can improve them further, and that's what we intend to do."

The company has begun to test all three engineered microbes at a pilot plant in Rome, NY, and it plans to have a commercial scale-up by 2010.

Qteros, a startup based in Marlborough, MA, is also pursuing consolidated bioprocessing with a microbe that breaks down cellulose and ferments it to make ethanol. Jef Sharp, executive vice president of Qteros, says that Mascoma's findings significantly advance the field of consolidated bioprocessing.

"Any progress is good," says Sharp. "We think that it's important for the industry to realize that it is likely the conversion technology that is going to have the best economics."
http://www.technologyreview.com/business/22637/page2/
Old 05-21-2009, 01:56 PM
  #2  
Software Engineer
 
DarkLord7854's Avatar
 
Join Date: Sep 2008
Location: Fort Lauderdale, Florida
Posts: 1,376
Likes: 0
Received 1 Like on 1 Post
The point of burning valuable food and other biomasses (such as trees and plants) when countries are starving still eludes me. I honestly find ethanol to be a waste of time.


IMO Hydrogen is where it's at.
Old 05-21-2009, 02:13 PM
  #3  
jersey fresh
Thread Starter
 
dillsrotary's Avatar
 
Join Date: Dec 2005
Location: Boston, MA
Posts: 3,688
Likes: 0
Received 0 Likes on 0 Posts
this solves the burning food matter (and biomass.)

The reason for using corn is its soft cellular wall, but the proper "bugs" can convert any plant cell into sugar and release ethanol. Not just biomass, but trash, grass clippings, wood chips, etc. Do you know how much trash you simply throw out can be converted to ethanol using this?
Old 05-21-2009, 02:24 PM
  #4  
Huge hole is huge
 
CyberPitz's Avatar
 
Join Date: Feb 2008
Location: Joplin, MO
Posts: 3,191
Likes: 0
Received 1 Like on 1 Post
Old 05-21-2009, 02:37 PM
  #5  
Registered
 
rotarygod's Avatar
 
Join Date: Apr 2003
Location: Houston
Posts: 9,134
Likes: 0
Received 22 Likes on 21 Posts
At some point in time, we'll be doing just that. Although maybe not with a Mr. Fusion! We'll be breaking down all kinds of biomatter that we currently waste. It will really slow the rate of landfill growth. There is actually very little waste that can't be used in some form or fashion. The issue has always been how easy is it to do this and how much will it cost? When it becomes cheap and easy, everyone will do it.
Old 05-21-2009, 02:40 PM
  #6  
Huge hole is huge
 
CyberPitz's Avatar
 
Join Date: Feb 2008
Location: Joplin, MO
Posts: 3,191
Likes: 0
Received 1 Like on 1 Post
Originally Posted by rotarygod
At some point in time, we'll be doing just that. Although maybe not with a Mr. Fusion! We'll be breaking down all kinds of biomatter that we currently waste. It will really slow the rate of landfill growth. There is actually very little waste that can't be used in some form or fashion. The issue has always been how easy is it to do this and how much will it cost? When it becomes cheap and easy, everyone will do it.
I know I would! Less trips to the trash barrel outside! Ahh, to be lazy
Old 05-21-2009, 02:55 PM
  #7  
jersey fresh
Thread Starter
 
dillsrotary's Avatar
 
Join Date: Dec 2005
Location: Boston, MA
Posts: 3,688
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by rotarygod
At some point in time, we'll be doing just that. Although maybe not with a Mr. Fusion! We'll be breaking down all kinds of biomatter that we currently waste. It will really slow the rate of landfill growth. There is actually very little waste that can't be used in some form or fashion. The issue has always been how easy is it to do this and how much will it cost? When it becomes cheap and easy, everyone will do it.
Exactly, you need to engineer a strain that can do the major seperate steps of process into one safely and economically.
Related Topics
Thread
Thread Starter
Forum
Replies
Last Post
theblinkof
Series I Trouble Shooting
33
10-04-2023 05:24 PM
Hunterkelley24
Series I Engine Tuning Forum
14
06-14-2022 08:32 AM
TotalAutoPerformance
Vendor Classifieds
3
10-14-2015 12:29 PM
jasonrxeight
RX-8's For Sale/Wanted
2
09-30-2015 01:53 PM
GK1707
RX-8 Parts For Sale/Wanted
0
09-27-2015 07:33 PM



You have already rated this thread Rating: Thread Rating: 0 votes,  average.

Quick Reply: The future of ethanol draws closer, N.H. company perfects production enzyme.



All times are GMT -5. The time now is 09:28 AM.