Derivation of Chamber Shape for a Wankel Rotary Engine
The following derives the equations that describe the shape of the chamber in which the rotor of a rotary engine revolves.  Any mistakes are mine alone.

Basic Description of Rotor Motion

The motion of the rotor can be broken down into two components; rotation of the rotor about its own center, and orbiting of the rotor about the centerline of the chamber.  The following drawings illustrate the concepts.

For rotation of the rotor about its center:


[image: image1]
The yellow circle represents the rotor center.

x’ and y’ define a fixed cartesian axis system whose origin is the center of the rotor

r1 is the distance from the rotor center to a tip

is the rotation angle of the rotor measured from the point shown, positive clockwise

(x1,y1) is a point on the path traced by the rotor

For any rotation angle 1, the point (x1,y1) is calculated as follows:

x1 = r1 * sin(1)

y1 = r1 * cos(1)
Note:
at 1 =0, x1 = 0, y1 = r1

at 1 = 90, x1 = r1, y1 = 0

x1 and y1 can both be negative, depending on the value of 1
For the orbital motion of the rotor about the centerline of the shaft: (the outline of the rotor has been removed for clarity)


[image: image2]
The green circle represents the center of the eccentric shaft (i.e., center of the chamber)

x and y define a fixed Cartesian coordinate system with origin at the center of the shaft

The short dashed line represents the motion of the rotor center as it orbits the shaft

r1 is the distance from the rotor center to the tip

r2 is the offset of the rotor center from the centerline of the eccentric shaft

2 is the rotation angle of the rotor center with respect to the shaft, positive clockwise

(x2,y2) is the coordinate defining the path traced by the rotor tip during the orbital motion

The path of the center of the rotor is calculated as a function of 2
xc = r2 * sin(2)

yc = r2 * cos(2)

For any rotation angle 2, during orbital motion the point (x2,y2) is calculated as follows:

x2 = r2 * sin(2)

y2 = r1 + r2 * cos(2)
Note that for the point chosen, the rotor tip moves in a circle of diameter r2 offset a distance r1 from the rotor center
Note:
at 2 = 0, x2 = 0, y2 = r1 + r2

at 2 = 90, x2 = r2, y2 = r1

at 2 = 180, x2 = 0, y2 = r1 – r2
For this particular geometry, x2 can be positive or negative, depending on the value of 2.  y2 will always be positive if r1 > r2.  This should be true in practice.

Derivation of the Tip Path Equations

The next step is to combine the separate motions (rotation of the rotor and orbital motion of the rotor) to determine the final equations that describe the x and y locations of the rotor tip as it rotates through a full 360 degrees.  What follows is representative if not mathematically rigorous.
Superimpose the two motions, rotation and orbit.  The point of the rotor tip through space can be through of as the sum of the rotor rotation plus the orbital translation:
x= x1 + xc = r1 * sin(1) + r2 * sin(2)

y= y1 + yc = r1 * cos(1) + r2 * cos(2)

1 refers to rotor rotation, 2 to the rotation of the rotor center about the eccentric shaft.

Assuming that the rotor turns at 1/3 the speed of the shaft:
2 = 3 * 1
(This assumption can be changed if different gearing is employed)
Put this expression back into the x and y equations and the result is:

x= r1 * sin(1) + r2 * sin(3*1)
y = r1 * cos(1) + r2 * cos(3*1)

Using a spreadsheet program, put in the equations and calculate values of x and y.  These can then be plotted as shown below.  Values of 6 and 1 were chosen for r1 and r2 respectively.  Increasing the ratio of r1/r2 results in flatter sides, decreasing it produces more curvature.
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Point traced by tip of rotor during orbit motion
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Path of rotor center as it orbits center of eccentric shaft
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